

#### Phase 2 Results

In Stable RRMS Participants with Chronic Optic Neuropathy

Michael Barnett, MBBS PhD FRACP FRCP

On behalf of the VISIONARY-MS Investigators



### Disclosures



- The University of Sydney received industry standard financial renumeration as a clinical trial site
- I am a consulting research director for Sydney Neuroimaging Analysis Centre (SNAC), which was contracted to analyse blinded MRI and VEP data
- I am a consulting physician to RxPx Cor
- I have received institutional support for research from Biogen, Merck, Novartis, Roche, BMS and Sanofi Genzyme
- I have received institutional support for speaking, participation in advisory boards or consulting from Biogen, Merck, Novartis, Roche, BMS, Sanofi Genzyme and Autobahn Therapeutics



#### VISIONARY-MS

### Acknowledgements

- We thank the study participants and their families for participating in clinical research
- We thank the site investigators for their research excellence and dedication to patients

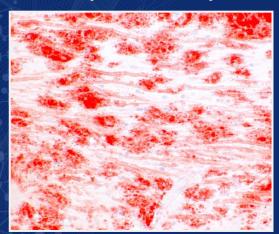
#### Australia<sup>1</sup>



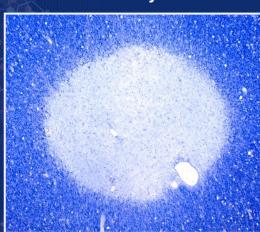
- U. Sydney, Brain Mind Centre
- · U. Sydney, Westmead Hospital
- Austin Health, Melbourne
- The Alfred Hospital, Melbourne
- Princess Alexandra Hospital, Brisbane
- U. Tasmania, Menzies Institute, Hobart
- John Hunter Hospital, Newcastle
- Lyell McEwin Hospital, Adelaide

#### US & Canada<sup>1</sup>




- U. British Columbia, Vancouver
- UT Southwestern, Dallas

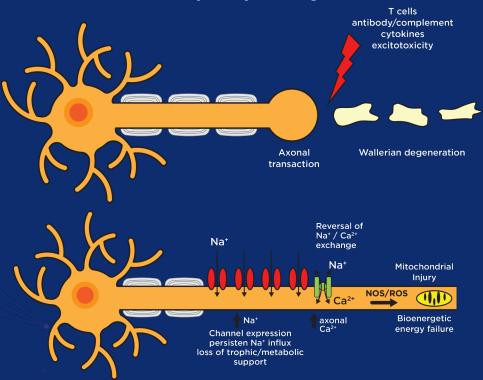





### MS Unmet Need: Remyelination and Neuroprotection

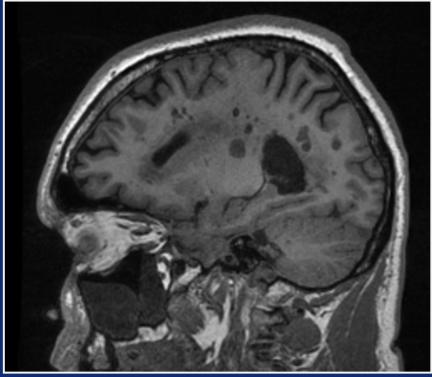
#### **Recent Demyelination & Remyelination**




**Chronic Demyelination** 



### Long-term Effect of Permanent Demyelination on Axonal Survival in Multiple Sclerosis


Alexandr Klistorner, PhD,\* Samuel Klistorner, BSci,\* Yuyi You, PhD, Stuart L. Graham, PhD, Con Yiannikas, PhD, John Parratt, PhD, and Michael Barnett, PhD

### Mechanisms of Axonal Injury In Inflammatory Demyelinating Diseases



Alexander Klistorner<sup>a,b,c,\*</sup>, Chenyu Wang<sup>c,d</sup>, Con Yiannikas<sup>e</sup>, John Parratt<sup>e</sup>, Michael Dwyer<sup>f</sup>, Joshua Barton<sup>d</sup>, Stuart L. Graham<sup>b</sup>, Yuyi You<sup>a,b</sup>, Sidong Liu<sup>a,c,d</sup>, Michael H. Barnett<sup>c,d</sup>

#### "Black Holes" Reflecting Severe Axonal Loss in MS Lesions



Luxol Fast Blue - Myelin Stain

Oil Red O - Lipid Stain

# CNM-Au8 | Cellular Energetic Nanocatalyst



**CNM-Au8**Oral Suspension

Clean Surfaced,
Highly Faceted Nanocrystals



Mechanistic Effects
In Neurons and Glia<sup>1</sup>

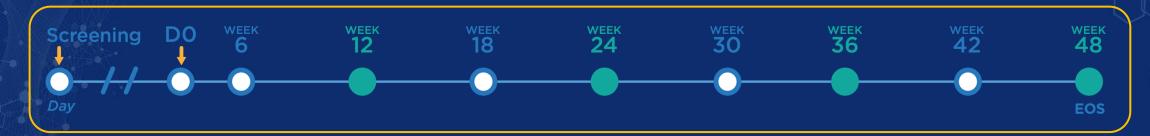
Increased NAD

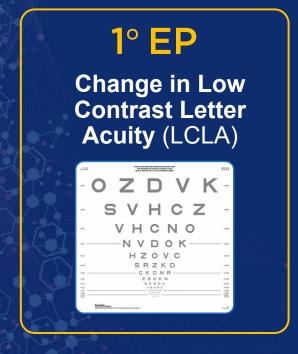
Increased ATP

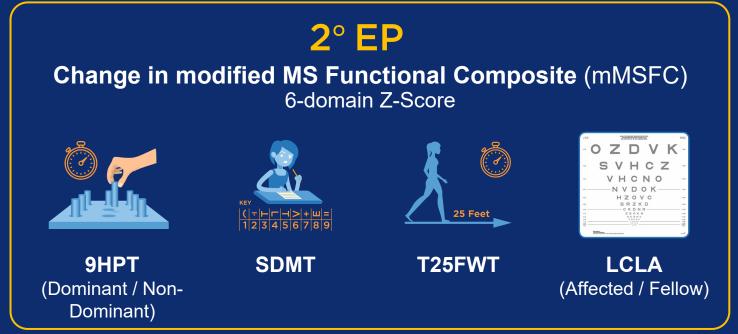
Decreased reactive oxygen species

Increased proteostasis

Improved Energy Production and Utilization




# Phase 2 Trial Design – Change to Week 48

- Randomised Double-Blind, 48-week, 2:1 Randomization (Active [15mg, 30 mg]: Placebo)
- n=73 of 150 planned; Study Ended Prematurely Due to Pandemic-related Enrollment Challenges









# Analyses



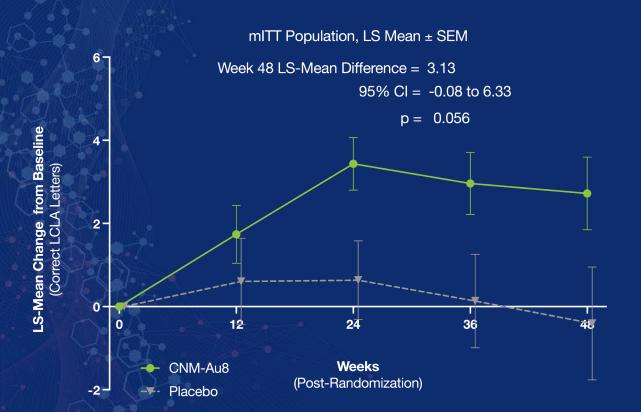
- Modified Intent to Treat (mITT) population excluded data from:
  - One participant from with change in mobility device (cane to walker)
  - One site (n=9) with LCLA testing execution errors
- Change to Week 48 was calculated with a mixed model for repeat measures
   (MMRM) with covariates including baseline value, age, sex, and visit
- CNM-Au8 doses (15mg and 30mg) were combined for these analyses
- Statistical threshold prespecified at p=0.10 <sup>1</sup>



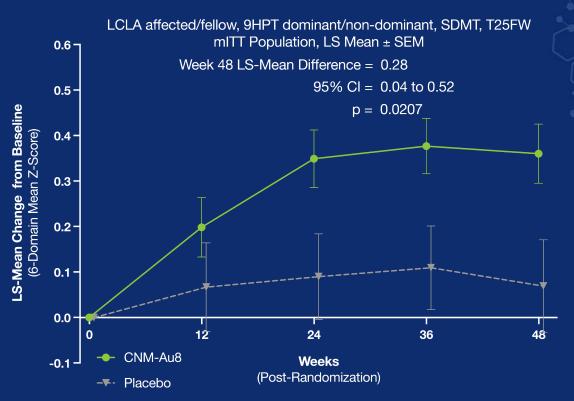


# Baseline Demographics

- Stable RRMS participants with chronic optic neuropathy
- Background DMTs: 92% treated with DMT (53% monoclonal antibodies, 32% oral)


| Baseline Value<br>mean (sd), n (%) | Age<br>(yrs) | Female<br>Sex<br>n, (%) | Race<br>n, (%)<br>White | Weight<br>(kg) | EDSS<br>Score | Years<br>from Dx | Months<br>Since<br>Relapse |
|------------------------------------|--------------|-------------------------|-------------------------|----------------|---------------|------------------|----------------------------|
| CNM-Au8 15 mg                      | 38.4         | 15                      | 23                      | 78.0           | 1.83          | 6.5              | 53                         |
| (n=24)                             | (10.2)       | (63%)                   | (96%)                   | (17.1)         | (1.3)         | (5.0)            | (57)                       |
| CNM-Au8 30 mg                      | 39.6         | 16                      | 24                      | 78.6           | 1.50          | 3.4              | 37                         |
| (n=25)                             | (7.6)        | (64%)                   | (96%)                   | (17.3)         | (1.1)         | (3.3)            | (35)                       |
| Placebo                            | 38.1         | 20                      | 22                      | 83.0           | 1.85          | 6.6              | 57                         |
| (n=24)                             | (8.3)        | (83%)                   | (92%)                   | (23.3)         | (1.4)         | (3.7)            | (38)                       |
| All Participants                   | 38.7         | 51                      | 69                      | 79.9           | 1.75          | 5.5              | 49                         |
| (n=73)                             | (8.6)        | (70%)                   | (95%)                   | (19.3)         | (1.5)         | (4.3)            | (45)                       |




#### **OVISIONARY-MS**

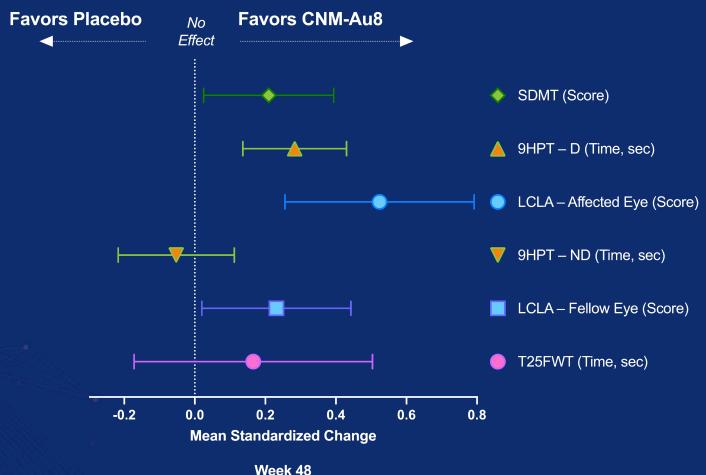
# Primary and Secondary Clinical Outcomes Significantly Improved

#### 1° | LCLA Change in the Affected Eye



# 2° | Global Neurological Improvement (mMFSC Mean Standardized Change)







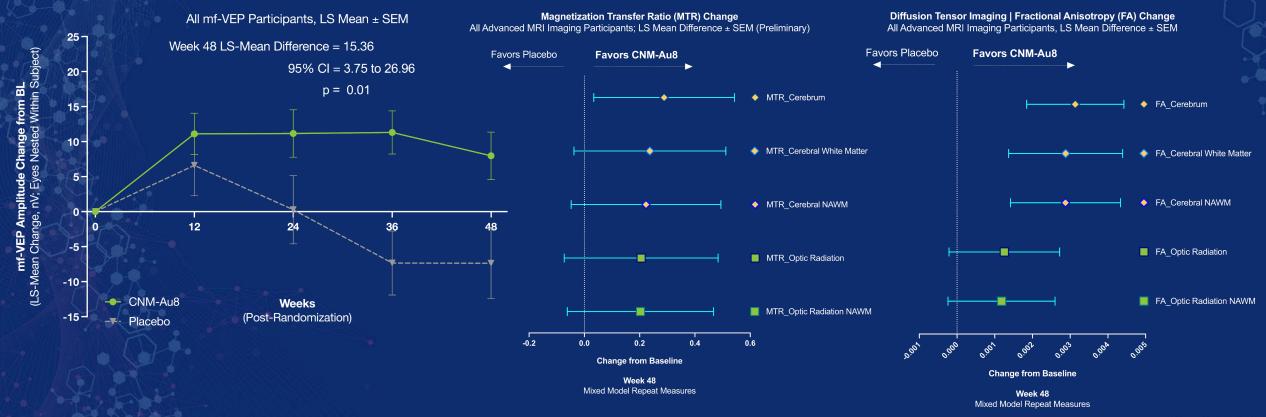

### Improvement Demonstrated Across Neuroaxis

#### **mMSFC Individual Domain Changes**

(mITT Population, LS Mean Difference ± SEM) CNM-Au8 Less Placebo








# Paraclinical Biomarker Evidence for Improved Axonal & Myelin Integrity (Multi-focal VEP, MTR, and DTI)

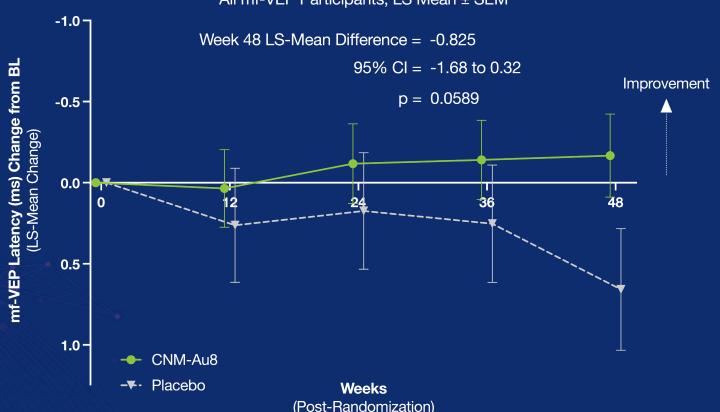


MTR (Myelin Integrity)
Week 48 Change<sup>1</sup>

Fractional Anisotropy (Axonal Integrity) Wk48 Change






# **CNM-Au8 Improved Myelin Integrity**

multi-focal VEP latency - marker of remyelination

# Increased Conduction Velocity (Signal Speed) Supports Remyelination or Enhanced Functional Myelin Integrity

#### **Inter-Eye Latency Asymmetry**

Mean Absolute Difference By Segment, Segments (n=56) Nested Within Subject All mf-VEP Participants, LS Mean ± SEM







### CNM-Au8 Was Safe & Well-Tolerated

- Treatment emergent adverse events (TEAEs) were transient and predominantly mild-to-moderate severity
- No dose limiting adverse events; no related serious adverse events (SAEs)

| Treatment Emergent Adverse Events (TEAEs) | CNM-Au8<br>15 mg<br>number (%) | CNM-Au8<br>30 mg<br>number (%) | Placebo<br>number (%) |
|-------------------------------------------|--------------------------------|--------------------------------|-----------------------|
| Subjects with any TEAE                    | 21 (88%)                       | 25 (100%)                      | 22 (92%)              |
| Subjects with SAE                         | 1 (4%)                         | 2 (8%)                         | 2 (8%)                |
| Subjects with Related TEAEs               | 2 (8%)                         | 5 (20%)                        | 2 (8%)                |
| Subjects Discontinued due to TEAE         |                                | 1 (4%)                         | 1 (4%)                |

**Placebo** SAEs: (1) Lentigo maligna melanoma, (2) pregnancy; CNM-Au8 15mg SAEs: (1) Pneumonia, bacteremia (staph aureus), endocarditis; CNM-Au8 30mg SAEs: (1) Ketamine infusion for pain and paracetamol overdose; (2) deep vein thrombosis (6-months post-discontinuation).

No Related TEAEs listings were observed in more than one participant per group.



### Conclusions



Clinical Functional Improvements

LCLA Vision Improvement

Global Neuraxis
Improvement (mMSFC)

Independent Quantitative Biomarkers of Myelin and Axonal Integrity

mf-VEP Amplitude Improvement

MTR & DTI Improvement

CNM-Au8
Demonstrated
Global Neurological
Improvement
in MS Patients
Adjunctive to DMTs

Safe & Well-Tolerated





Phase 2 Results

In Stable RRMS Participants with Chronic Optic Neuropathy

