Phase 2 OVISIONARY-MS STUDY

In Stable RMS Participants with Chronic Optic Neuropathy

Michael Barnett, MBBS PhD FRACP FRCP On behalf of the VISIONARY-MS Investigators

Disclosures

- The University of Sydney received industry standard financial renumeration as a clinical trial site
- I am a consulting research director for Sydney Neuroimaging Analysis Centre (SNAC), which was contracted to analyse blinded MRI and VEP data

VISIONA

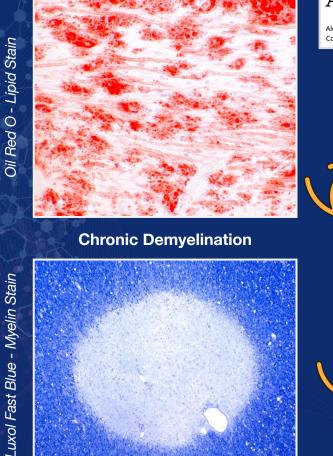
- I am a consulting physician to RxPx Cor
- I have received institutional support for research from Biogen, Merck, Novartis, Roche, BMS and Sanofi Genzyme
- I have received institutional support for speaking, participation in advisory boards or consulting from Biogen, Merck, Novartis, Roche, BMS, Sanofi Genzyme and Autobahn Therapeutics

Acknowledgements

- We thank the study participants and their families for participating in clinical research
- We thank the site investigators for their research excellence and dedication to patients

Australia¹

- U. Sydney, Brain Mind Centre
- U. Sydney, Westmead Hospital
- Austin Health, Melbourne
- The Alfred Hospital, Melbourne
- Princess Alexandra Hospital, Brisbane
- U. Tasmania, Menzies Institute, Hobart
- John Hunter Hospital, Newcastle
- Lyell McEwin Hospital, Adelaide

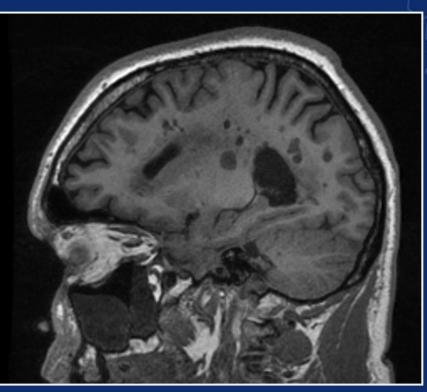

US & Canada¹

- U. British Columbia, Vancouver
- UT Southwestern, Dallas

MS Unmet Need | Remyelination and Neuroprotection

Recent Demyelination & Remyelination

Long-term Effect of Permanent Demyelination on Axonal Survival in Multiple Sclerosis

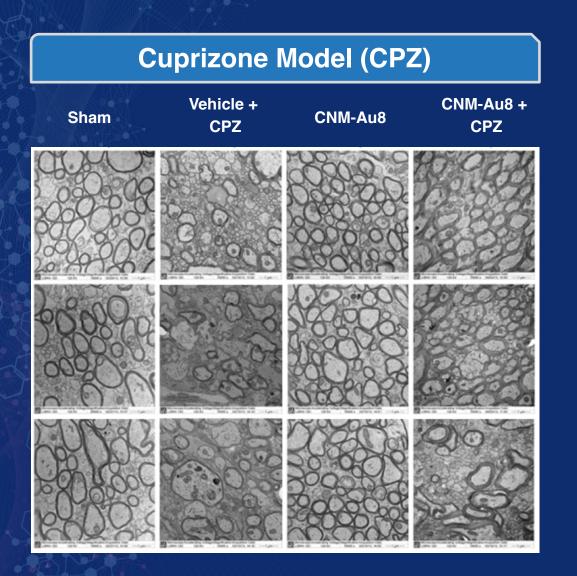

Alexandr Klistorner, PhD,* Samuel Klistorner, BSci,* Yuyi You, PhD, Stuart L. Graham, PhD, Con Yiannikas, PhD, John Parratt, PhD, and Michael Barnett, PhD

Mechanisms of Axonal Injury In Inflammatory Demyelinating Diseases T cells antibody/complement cytokines excitotoxicity Axonal Wallerian degeneration transaction Reversal o Na⁺ / Ca²⁴ Na¹ exchange Na Mitochondrial Injury Bioenergetic Na axonal energy failure Ca24 Channel expression oss of trophic/metabolic support

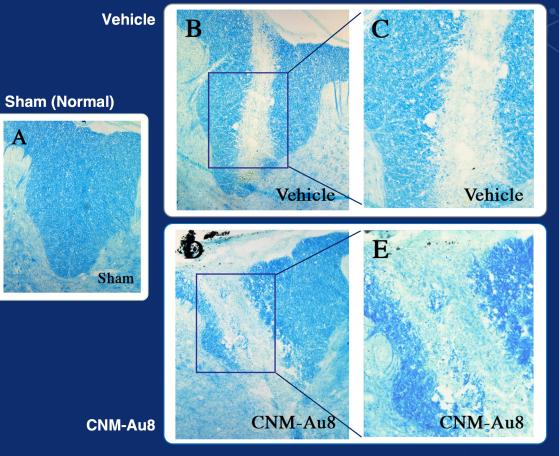
Evidence of progressive tissue loss in the core of chronic MS lesions: A longitudinal DTI study*

Alexander Klistorner^{a,b,c,*}, Chenyu Wang^{c,d}, Con Yiannikas^e, John Parratt^e, Michael Dwyer^f, Joshua Barton^d, Stuart L. Graham^b, Yuyi You^{a,b}, Sidong Liu^{a,c,d}, Michael H. Barnett^{c,d}

"Black Holes" Reflecting Severe Axonal Loss in MS Lesions


CNM-Au8 | Cellular Energetic Nanocatalyst

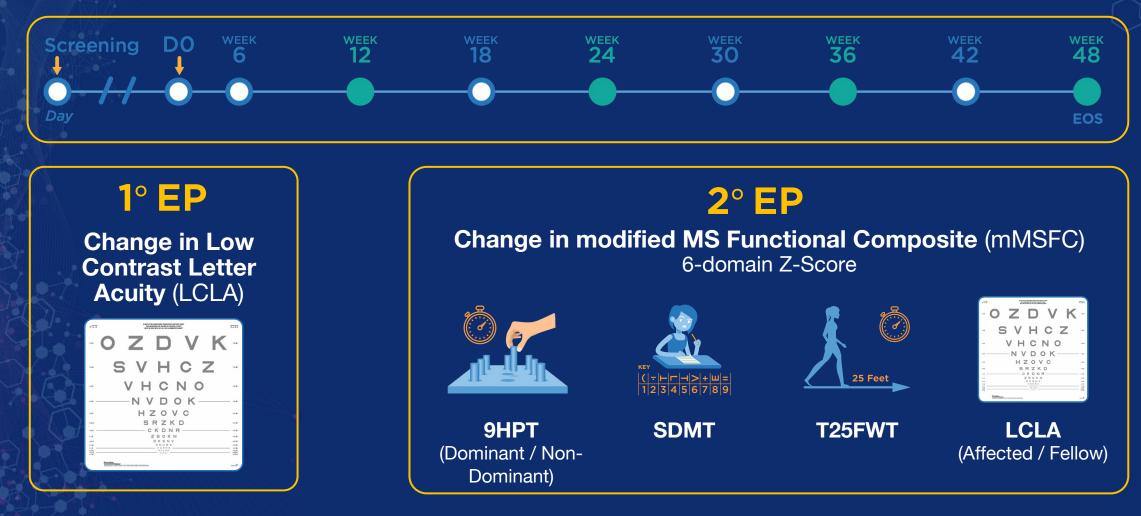
Mechanistic Effects Improved Energy CNM-Au8 In Neurons and Glia¹ **Oral Suspension Production and** Utilization Clean Surfaced, **Highly Faceted Nanocrystals Increased NAD Increased ATP Decreased reactive** oxygen species Increased proteostasis


VISIONARY-MS

¹ Robinson et al. Sci Rep. 2020 Feb 11;10(1):1936

CNM-Au8 | Preclinical Remyelination Summary

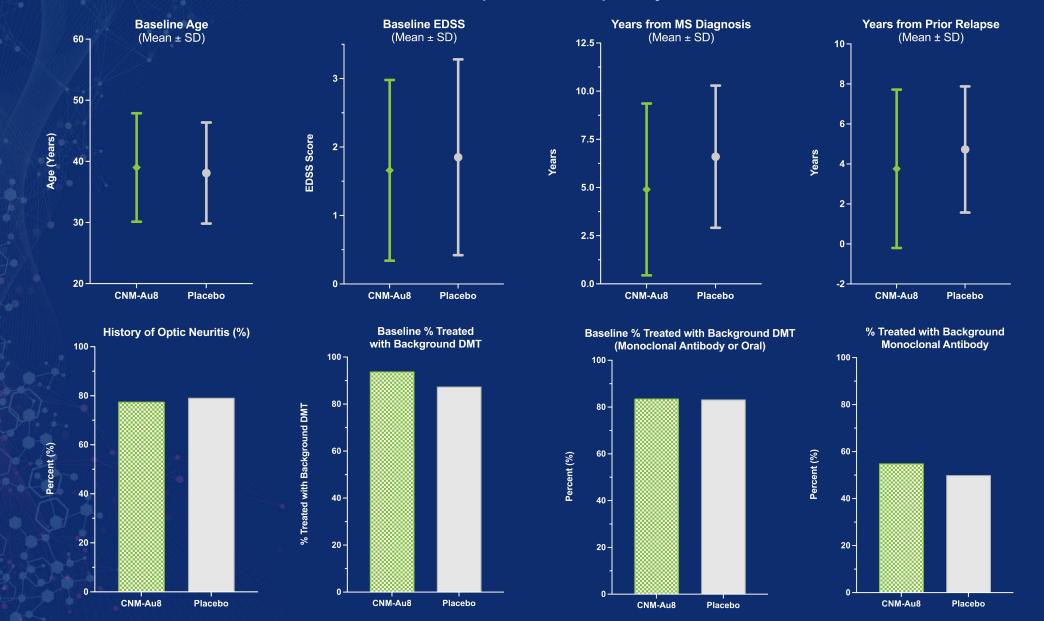
Lysolecithin Model (LPC)


Robinson et al. Sci Rep. 2020 Feb 11;10(1):1936.

VISIONARY-MS

Phase 2 Trial Design | Change to Week 48

- Randomised Double-Blind, 48-week, 2:1 Randomization (Active [15mg, 30 mg]: Placebo)
- n=73 of 150 planned; Study Ended Prematurely Due to Pandemic-related Enrollment Challenges


VISIONARY-MS

Baseline Demographics & Background Treatment

OVISIONARY-MS

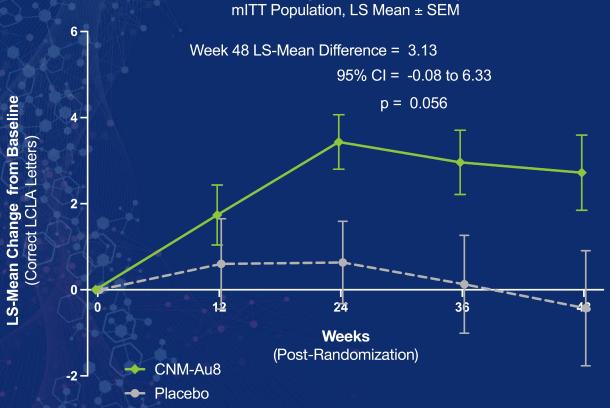
Stable RRMS participants with chronic optic neuropathy

8

Analyses

Modified Intent to Treat (mITT) population excluded data from:

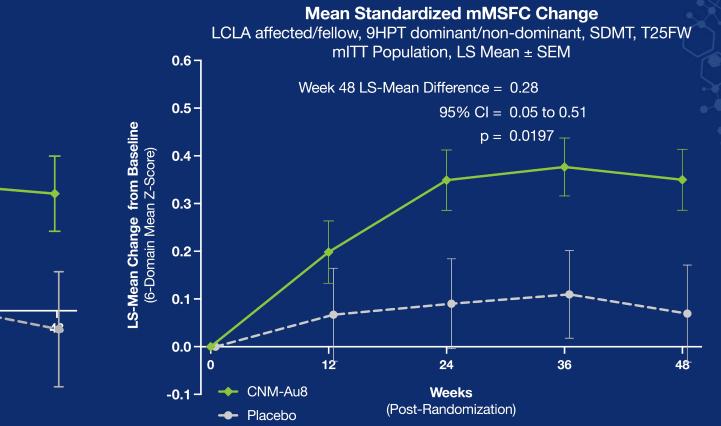
One participant from with change in mobility device (cane to walker)


VISION

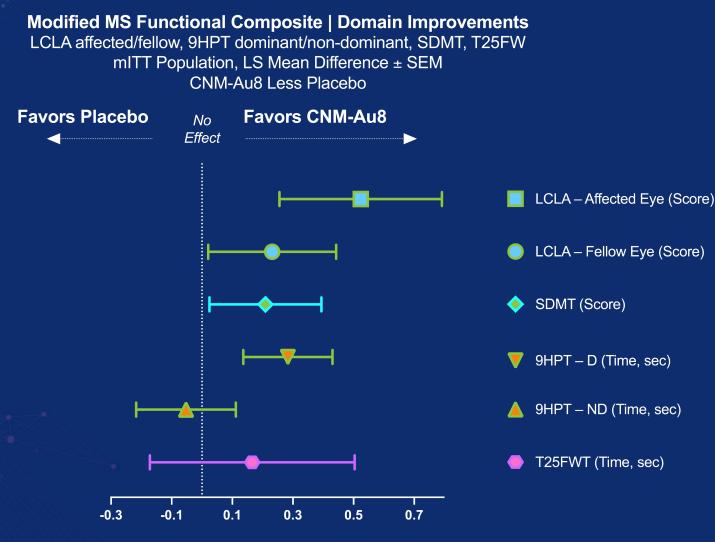
- \checkmark One site (n=9) with LCLA testing execution issues
- Change to Week 48 was calculated with a mixed model for repeat measures (MMRM) with covariates including baseline value, age, sex, and visit
- CNM-Au8 doses (15mg and 30mg) were combined for analyses
 - Statistical threshold prespecified at p=0.10¹

Primary and Secondary Clinical Outcomes Significantly Improved

1° | LCLA Change in the Affected Eye


LCLA Change in the Affected Eye

2° | Global Neurological Improvement


mMFSC Mean Standardized Change

VISIONARY-MS

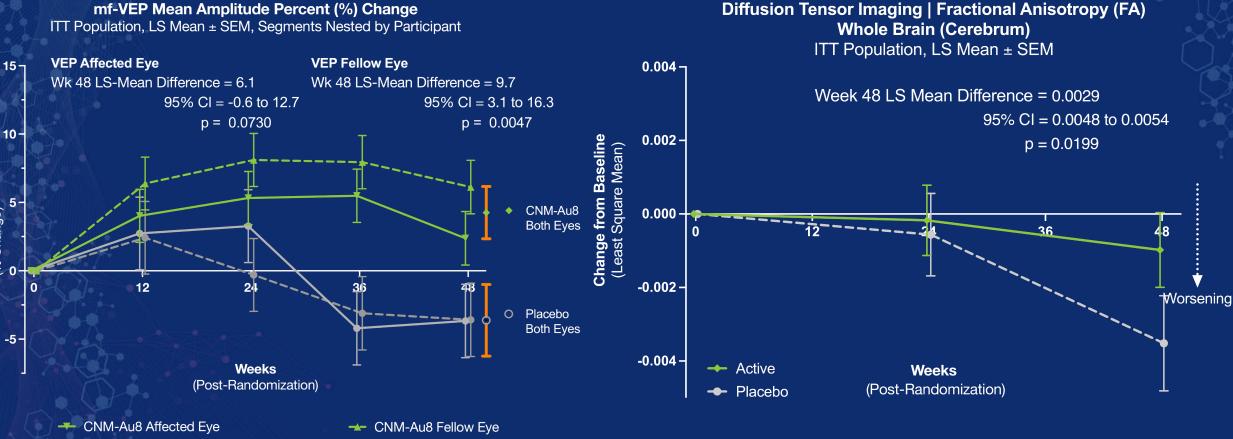
Improvement Favored CNM-Au8 Across Neuraxis

mMSFC Individual Domain Changes at Week 48

VISIONARY-MS

Mean Standardized Change

Paraclinical Evidence for Improved Axonal Integrity Multi-focal VEP (mf-VEP), MRI Diffusion Tensor Imaging (DTI)


mf-VEP Amplitude

Week 48 Percent Change¹

mf-VEP Mean Amplitude Percent (%) Change

Fractional Anisotropy | DTI

Week 48 Whole Brain Change¹

Placebo Fellow Eve

VISIONARY-MS

Placebo Affected Eye

LS-Mean Change from Baseline (% Change)

VISIONARY-MS Paraclinical Evidence for Improved Myelin Integrity multi-focal VEP latency, MTR **Increased Conduction Velocity (Signal Speed)** Magnetization Transfer Ratio (MTR) Week 48 Change by Brain Region ¹ Enhanced Functional Myelin Integrity¹ Magnetization Transfer Ratio (MTR) mf-VEP Inter-Eye Latency Asymmetry Week 48 Change from Baseline Mean Inter-Eye Difference By Segment, Segments Nested Within Subject ITT Population, LS Mean Difference ± SEM ITT Population, LS Mean ± SEM (Preliminary) -1.0 **Favors Placebo Favors CNM-Au8** Week 48 LS-Mean Difference = -0.82595% Cl = -1.68 to 0.32 mf-VEP Latency (ms) Change from BL (LS-Mean Change) MTR Cerebrum (Whole Brain) Improvement p = 0.0589-0.5 MTR Cerebral White Matter 0.0 MTR Cerebral NAWM 0.5 MTR Optic Radiation MTR Optic Radiation NAWM 1.0 CNM-Au8 Weeks -0.2 0.2 0.6 0.0 0.4 Placebo (Post-Randomization) LS-Mean Difference Change from Baseline

CNM-Au8 Was Safe & Well-Tolerated

- Treatment emergent adverse events (TEAEs) were transient and predominantly mild-to-moderate severity
- No dose limiting adverse events; no related serious adverse events (SAEs)

Treatment Emergent Adverse Events (TEAEs)	CNM-Au8 15 mg number (%)	CNM-Au8 30 mg number (%)	Placebo number (%)
Subjects with any TEAE	21 (88%)	25 (100%)	22 (92%)
Subjects with Serious AE (SAE)	1 (4%)	2 (8%)	2 (8%)
Subjects with Related TEAEs	2 (8%)	5 (20%)	2 (8%)
Subjects Discontinued due to TEAE		1 (4%)	1 (4%)

Placebo SAEs: (1) Lentigo maligna melanoma, (2) pregnancy; CNM-Au8 15mg SAEs: (1) Pneumonia, bacteremia (staph aureus), endocarditis; CNM-Au8 30mg SAEs: (1) Ketamine infusion for pain and paracetamol overdose; (2) deep vein thrombosis (6-months post-discontinuation).

No Related TEAEs listings were observed in more than one participant per group.

Conclusions

Clinical Functional Improvements

LCLA Vision Improvement Global Neuraxis Improvement

Independent Quantitative Biomarkers
of Enhanced Axonal Integrity

mf-VEP Amplitude Improvement Fractional Anisotropy Improvement CNM-Au8 Demonstrated Global Neurological Improvement in MS Patients Adjunctive to DMTs

VISIONARY-MS

3